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ABSTRACT 

 

With the rapid development of artificial intelligence, 

many research challenges have emerged, including the 

black-box nature of models and the automation of 

deployment and maintenance processes. The black-box 

problem forces developers to spend considerable time 

and resources understanding model decisions when 

optimizing model performance. As a result, Explainable 

AI (XAI) techniques are becoming increasingly 

important, but current XAI explanation methods are still 

underdeveloped, requiring significant time investment 

from researchers to learn. Similarly, without automation, 

model deployment and maintenance also require a large 

amount of time and effort, making Machine Learning 

Operations (MLOps) a growing trend. To address these 

challenges, this research proposes an innovative 

approach that combines XAI techniques with Large 

Language Model (LLM), utilizing custom graphic 

prompts for XAI techniques and text explanations 

provided by LLM. This enables developers to quickly 

and easily understand model decisions while addressing 

automation issues related to model deployment and 

maintenance with Kubeflow. Experimental results show 

that feature selection using SHAP improves model 

performance. Integrating these steps into Kubeflow 

allows for the automation of model deployment, training, 

and explanation processes, giving model developers 

more time to focus on improving their models. 
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1. INTRODUCTION 

 

In recent years, machine learning (ML) has achieved 

higher accuracy, but most high-precision models are 

black boxes, meaning the models lack interpretability. 

This phenomenon has garnered widespread attention and 

discussion in both academia and industry, leading to the 

rise of XAI. 

 

A black box means that even if we can accurately 

predict outcomes, we cannot explain the underlying 

prediction logic and reasoning process, forcing 

developers to spend more time improving the model. 

Black box models are applied in many critical societal 

areas such as healthcare, finance, industry, and military 

fields, where inaccurate predictions can have irreversible 

consequences. Therefore, the models used must be 

transparent and trustworthy, making XAI technology a 

key solution to address the interpretability problem of 

models [1]. Through model explanations, developers can 

understand model decisions, thereby building trust in 

predictions and ensuring their reliability and validity. 

Apart from the black box problem, machine learning 

models also face significant challenges in automation and 

maintenance, including setting up training environments, 

deploying models, and the manpower required for model 

maintenance. The development and application of 

models are closely related to these challenges, and 

Machine Learning Operations (MLOps) has emerged as 

a solution to address these issues. 

MLOps provides a unified framework for managing 

the lifecycle of models, covering development, 

deployment, and monitoring processes. It allows for 

highly automated model maintenance while ensuring 

environmental consistency. These advantages can be 

applied to model development, controlling model 

versions and achieving updates through automated 

deployment functions. 

This research proposes an innovative approach by 

combining Kubeflow Pipeline (KFP) [2] workflow, XAI, 

and LLM. By utilizing LLM with prompt templates, 

XAI-generated graphical information is transformed into 

concise and understandable text explanations. This 

provides model developers with more comprehensive 

explanations, enabling them to improve model 

performance based on these explanations, and enhances 

the understanding and trustworthiness of model 

decisions. Additionally, MLOps offers high automation 

for model explanation, training, and deployment, 



addressing issues related to model deployment and 

training. 

 

2. BACKGROUND KNOWLEDGE 

 

2.1. Explainable AI (XAI) 

 

In recent years, the rapid development of artificial 

intelligence has led to more precise and complex model 

predictions, increasing human reliance on these models. 

However, this raises a problem: these models often lack 

the ability to explain their reasoning and actions to human 

users. Gunning etc. [4] proposed a novel framework that 

addresses the challenge of model interpretability by 

combining ML development principles with human-

computer interaction. In [5], the concept of XAI was 

introduced to explain the behavior of AI systems in 

simulation game scenarios.  It was mentioned that to 

achieve the highest accuracy with modern large datasets, 

the models used are often so complex that even experts 

find them difficult to interpret. Therefore, a unified 

method for explaining model predictions, SHapley 

Additive exPlanations (SHAP), was proposed [6]. 

Moreover, Ribeiro etc. [7] proposed LIME, a local post-

hoc explanation method that transforms unreliable 

models into trustworthy ones. 

 However, the explanation method described above is 

too static, lacking interaction between the explainer and 

the recipient. The best explanation method should be 

human-centered. As mentioned in [8], explanations 

should involve interaction between the explainer and the 

recipient. The essence of explanations should be social, 

and communication with users should be conducted 

interactively. XAI technology should focus on users, 

providing explanations that help clarify and simplify 

model principles for better understanding. [3] suggests 

that LLM should be used to increase interaction between 

XAI and human users, and hopes that researchers will 

develop interactive explainable systems using LLM. 

 

2.2. Kubeflow 

 

Kubeflow is a model development platform built on 

Kubernetes [10]. Building machine learning systems 

typically involves system setup, requiring the installation 

of various packages, which makes the system 

increasingly complex and difficult to migrate when 

development environments change. Kubeflow addresses 

all environmental issues by providing the tools needed 

for model development. It integrates various open-source 

projects from different areas of machine learning, such as 

Optuna, Argo, and Kserve, to manage different stages of 

machine learning, including hyperparameter tuning, 

workflows, prediction, and service management. 

Kubernetes, like Kubeflow, is an open-source system 

developed by Google. Kubernetes is an open-source 

container management system, where the outermost 

 
1 https://www.kaggle.com/datasets/adityakadiwal/water-potability 

container in Kubernetes is called a Pod. A Pod is a 

collection of one or more containers, with the main 

program running through the Pod's child containers while 

other containers provide supporting functions. Through 

Pods, different teams can develop various functionalities, 

and Pods can enhance robustness, composability, and 

fine-grained resource adjustment capabilities [10]. 

 

3. METHOD 

 

We used KFP to divide the machine learning process into 

three parts. The first part involves model development 

and training. The second part provides XAI techniques 

for the model trained by KFP The third part is the 

deployment of the trained model for use. Figure 1 

illustrates the workflow of this research. 

 

 

Fig. 1. The proposed framework: XAI and LLM are 

integrated in the KFP . 

Kubeflow provides powerful workflow orchestration 

capabilities for model deployment and training, but it 

lacks XAI techniques. This limitation means that 

developers cannot improve black-box models effectively. 

Therefore, we propose an innovative idea: integrating 

XAI techniques into KFP for machine learning models, 

and using LLM to provide more in-depth explanations for 

developers. This approach allows developers to better 

understand feature importance and key factors within the 

model. Using this information enables developers to 

improve model performance. 

Pipelines are primarily composed of components, 

each performing different functions. Data transfer 

between components is facilitated through Kubeflow 

APIs. Pipelines offer high portability because each 

component is an independent function. Furthermore, 

debugging generally becomes easier. 

 

3.1. Model Development 

 

3.1.1. Data Preprocess 

In the preprocessing phase, we addressed missing values 

by imputing them, using categorical clustering, and 

applied this to a water resources dataset 1  related to 

environmental issues. This dataset had missing values, so 



we imputed missing values for the clustered features—

PH, Sulfate, and Trihalomethanes—using the mean of 

the features. We then split the dataset into 70% training 

and 30% testing sets. Finally, we standardized the feature 

values using StandardScaler to ensure model stability. 

  

3.1.1. Katib 

Before training, we perform hyperparameter tuning to 

optimize model performance. Katib is a hyperparameter 

tuning tool within Kubeflow that orchestrates 

hyperparameter tuning workflows through Pipelines. 

Katib provides various algorithms for hyperparameter 

optimization and allows custom-developed algorithms to 

be packaged into Docker containers for use within Katib. 

In this study, we package the model into a Docker 

container and use Katib for hyperparameter tuning. The 

hyperparameter tuning was divided into five steps: 

1. Algorithm Selection: Katib offers multiple 

algorithms for hyperparameter optimization. After 

comparison, we chose Tree of Parzen Estimators 

(TPE) as the primary optimization algorithm. 

2. Defining Hyperparameter Ranges: We limit the 

range of hyperparameters to reduce the burden on 

the search algorithm, maximizing the effectiveness 

of hyperparameter tuning and further improving 

model performance. 

3. Choosing Evaluation Metrics: We select evaluation 

metrics to assess model performance under different 

hyperparameters. Katib allows setting performance 

thresholds. This study uses F1-score as the primary 

evaluation metric, while also displaying Recall and 

Precision as additional metrics for reference. 

4. Output: The optimized hyperparameters are 

outputted for model training. 

5. Cleaning Up Experimental Environment: In Katib, 

using the same name can lead to errors. To avoid 

continuous occupation of system resources, we 

delete completed experimental environments. 

 

3.2. Explain model 

 

We used XAI techniques to interpret the model and 

combined them with LLM for further explanation. 

Developers can use SHAP feature importance and key 

points extracted by LLM to improve the model. Many 

XAI techniques are discussed in the literature, with 

SHAP being one of the most commonly used techniques.  

 

3.2.1. SHAP 

SHAP is an XAI technique based on game theory [6]. It 

helps in understanding model predictions by providing 

insights into how features contribute to the output. SHAP 

exhibits unique advantages among XAI techniques, 

offering both global explanations of the model's behavior 

and local explanations for individual predictions. The 

formula for local explanations in SHAP is represented as 

follows: 

𝜙𝑖(𝑥) = ∑
∣S∣!(∣N∣−∣S∣−1)!

∣N∣!S⊆N∖{i} [𝑓(𝑥𝑆∪{𝑖}) − 𝑓(𝑥𝑆)]     (1) 

where 𝑥 represents a data point, 𝑖 denotes a feature, 

and  𝜙𝑖(𝑥) indicates the contribution of the ith feature for 

the data point. 𝑁 represents the set of all features, and 𝑆 

is the subset obtained by excluding feature 𝑖  
∑  S⊆N∖{i} represents require computing and summing all 

possible subsets  𝑆  , where |𝑆|  and |𝑁|  denote the 

number of features in the sets 𝑆  and 𝑁 . This formula 

calculates an attribution score  𝜙𝑖(𝑥) for each feature, 

quantifying its contribution to the model's prediction 

probability 𝑓(𝑥). The model prediction probability 𝑓(𝑥) 

is determined by summing the baseline prediction 𝜙0 and 

the contributions from all features 𝜙𝑖(𝑥). The baseline 

prediction 𝜙0  is calculated as the average prediction 

across all feature distributions. The formula is expressed 

as follows: 

𝑓(𝑥) ≈ ∑ 𝜙𝑖(𝑥) +𝑁
𝑖 𝜙0                                    (2) 

𝝓𝟎 = 𝔼𝒙[𝒇(𝒙)]                                        (3) 

Global explanations help developers understand the 

importance and positive or negative correlations of 

features within the model. The overall importance of a 

single feature in global explanations is represented by the 

sum of its contributions across all data points. This can 

be expressed with the following formula: 

Φi = ∑ |𝜙𝑖(𝑥)|                                 𝑋
𝑥             (4) 

The higher the value of Φ𝑖 , the greater the importance 

of the feature. SHAP values and plots only show how 

feature values impact the model. This study further 

proposed to use Pearson correlation coefficient to 

quantify the positive or negative correlation between 

feature values and their impact (i.e., SHAP values) on 

model output. The Pearson correlation coefficient is 

calculated using the following formula: 

γ =
∑(Xi−X̂)(Yi−Ŷ)

√∑(Xi−X̂)2 ∑(Yi−Ŷ)2
                       (5) 

where 𝑋𝑖 represents the SHAP value, 𝑌𝑖 represents the 

feature value, 𝑋̂ is the average SHAP value, and 𝑌̂ is the 

average feature value. 

 

3.2.2. LLM Explain SHAP Feature Important 

This study uses LLM to provide extended explanations 

for visualizations generated by SHAP (e.g., Figure 2) and 

displays both the graphics and text explanations on the 

Kubeflow UI using its visualization technology. 

However, LLM are not specifically trained for XAI 

purposes and thus lack inherent XAI knowledge. To 

address this, we propose to employ customized prompt 

templates to enhance the LLM understanding of SHAP 

data (importance, positive/negative correlations) and 

guide the LLM in generating specific and relevant 

responses. Experimental results show that prompt 

templates can effectively improve the LLM 

understanding of SHAP data and increase the stability of 

the generated text. Texts generated by the LLM provide 

developers with insights into feature importance and the 



positive/negative correlations of features, which can be 

used to improve model performance. 

 

 

Fig. 2. SHAP-generated plot 

In the proposed KFP, global information and 

statistical analysis from SHAP will be sent to another 

component for extended explanation by the LLM. 

Considering that the LLM used in this study is primarily 

for text analysis and does not support tabular data, those 

data will be converted to JSON format before being read 

by the LLM. Converting to JSON helps the LLM to 

understand the data more easily while preserving its 

structured information. 

 

3.3. Serving Model 

 

During the deployment phase, this study uses Kserve to 

deploy machine learning models for user predictions. 

Kserve is based on Kubernetes and utilizes Knative and 

Istio for model deployment and service management. It 

is highly compatible with Kubeflow, allowing Pipelines 

to use its services for model deployment. 

In Kubeflow, we use PVC (Persistent Volume Claims) 

to store model data and create a YAML file to describe 

the configuration and parameters of the model service, 

including the location of the model data for deployment 

through Kserve. Once the deployment is complete, the 

deployed model can be viewed on the Kubeflow UI, and 

predictions can be made by invoking the model through 

this endpoint. 

 

4.  EXPERIMENT 

 

In the field of environmental monitoring, this study used 

a water quality dataset to validate the proposed research 

framework. The dataset includes 10 features and 3,276 

records, with the data split into 70% for training and 30% 

for testing. After comparing five prediction models, 

XGBoost demonstrated the highest overall performance, 

as shown in Table 1. Therefore, XGBoost was ultimately 

chosen as the prediction model. An XAI technique, 

specifically TreeSHAP, was used to explain the model. 

Following this, LLM was employed for further 

explanation of the SHAP plot, enabling model developers 

to more quickly understand the importance of features 

and their positive/negative correlations.  

 

Table 1 Performance of all models shows that XGBoost 

outperformed the other models 

Model F1-score Precision Recall 

XGBoost 0.727 0.808 0.660 
CatBoost 0.722 0.821 0.645 

Decision Tree 0.664 0.724 0.612 

KNN 0.457 0.514 0.411 

SVM 0.346 0.739 0.225 

In the entire workflow, we used KFP as the workflow 

management tool to construct a pipeline, enhancing 

automation and efficiency. We also utilized the 

visualization capabilities of the Pipeline to display the 

results of LLM and SHAP, allowing model developers to 

easily interpret the outcomes. Additionally, the pipeline 

automates model deployment, as illustrated in Figure 3. 

 

 

 

Fig. 3. a. The KFP automates data preprocessing, training, 

deployment, and integrates explanation functionalities. b. 

(1) The Kubeflow interface successfully displays SHAP 

plots and the explanations of SHAP plots generated by 

the LLM. (2) It can be observed that the red and blue data 

points in the SHAP plot are highly mixed, indicating that 

the dataset is difficult to predict. It generates explanations 

from the LLM regarding feature importance. (3) It 

explains the positive and negative correlations between 

feature values and model output values in the SHAP plots, 

making it easier for viewers to understand the SHAP 

result plots. 

In this study, the ChatGPT API was used to build a 

prototype system for the LLM. As mentioned in Section 

2.2.2, we have set up prompt templates to assist ChatGPT 

in understanding SHAP data and guiding it to generate 



relevant responses. The important prompt template 

designed for this research includes two steps to explain 

feature importance in the model. The first part explains 

how feature importance impacts model predictions. The 

second part provides examples for the LLM on how to 

present feature names and importance scores, along with 

a template for explanations. Table 2 presents the 

customized prompt templates for the LLM in this study. 

Table 2  Feature importance prompt templates. 

Step1 

Feature importance can evaluate the contribution of each 

feature to model prediction. The higher the value, the greater 

the impact on the model output result. 

Step2 

example:<br>{"Feature": "A", "Importance": 90}, 

{"Feature": "B", "Importance": 82}, {"Feature": "C", 

"Importance": 66}, {"Feature": "D", "Importance": 62}, 

{"Feature": "E", "Importance": 20},  {"Feature": "F", 

"Importance": 19} 

Its important features are "A", "B", "C", and "D". These four 

features contribute the most to the target variable, and their 

important star scores are 90, 82, 66, and 62 

respectively.<br>In addition, features such as "E", "F" have 

slightly lower contributions to the target variable, and their 

importance scores are 20, and 19 respectively. 

By using prompt templates to explain feature 

importance, the results are shown in Table 3. The input 

SHAP data is represented as 𝑋, which includes two main 

pieces of information: feature names and importance 

scores. 

Table 3 Explanation generated by ChatGPT. 

User Prompt 

X 

Response by ChatGPT 

Feature importance can evaluate the contribution of each 

feature to model prediction. The higher the value, the greater 

the impact on the model output result. 

Its important features are ‘Sulfate’, ‘ph’, ‘Solids’, and 

‘Trihalomethanes’. These four features contribute the most 

to the target variable, and their importance scores are 2441, 

1631, 580, and 497 respectively. In addition, features such as 

‘Chloramines’, ‘Hardness’, ‘Organic_carbon’, ‘Turbidity’, 

and ‘Conductivity’ have slightly lower contributions to the 

target variable, and their importance scores are 489, 482, 

433, 405, and 383. respectively. 

From the text generated by ChatGPT, developers can 

learn the feature names and their corresponding 

importance scores for the dataset. The text also highlights 

the four most important features for reference. To explain 

feature correlations, we use a similarly structured prompt 

template. The first part introduces the relationship 

between correlations and SHAP plot, while the second 

part provides examples and a threshold for determining 

whether the red and blue regions in the SHAP plot are 

distinctly differentiated. Table 4 shows the prompt 

templates. 

Table 4 SHAP value & feature value Pearson 

correlation prompt templates 

Step1 

Explain binary classification in the SHAP global diagram. 

Positive correlation means that the larger the value, the 

closer it is to category 1, and the smaller the value, the closer 

it is to category 0; negative correlation means The smaller 

the value, the closer it is to category 1, and the larger the 

value, the closer it is to category 0. Taking the X-axis SHAP 

value of 0 as the midline: a positive correlation means red is 

on the right and blue is on the left; a negative correlation 

means blue is on the right and red is on the left. The higher 

the correlation, the more obvious the distribution of red and 

blue. 

Step2 

example:<br> 

{"feature": "A", "feature value& shap value Pearson 

Correlation": 0.75}, {"feature": "B", "Pearson Correlation": 

0.26}, {"feature": "C", "Pearson Correlation": -0.51}, 

{"feature": "D", "Pearson Correlation": -0.81}, {"feature": 

"E", "Pearson Correlation": 0.70}, {"feature": "F", "Pearson 

Correlation":     -0.53} 

Red on the right and blue on the left represent positive 

correlation, which means that the corresponding features are 

"A", " B ", "E", respectively, and their values are 0.75, 0.26 

and 0.70; while blue is on the right and Red on the left 

represents negative correlation, and the corresponding 

features are "C", "D", "F", respectively, and their values are 

-0.51, -0.81, -0.53. 

If most positive or negative correlations are greater than 0.5 

or less than -0.5: The higher the correlation, the more 

obvious the distribution of red and blue. For example, the 

resolution of "A", "E", "C", "D", "F is relatively high. If most 

positive or negative correlations are less than 0.5 or greater 

than -0.5: The higher the correlation, the more obvious the 

distribution of red and blue. Most of the relationships are 

weak, making it difficult to distinguish between the red and 

blue areas. 

Table 5 presents the explanations of positive and 

negative correlations generated by the LLM. The input 

data is represented as Y, which includes feature names 

and the Pearson correlation coefficients between feature 

values and SHAP values. 

Table 5  Explanation generated by ChatGPT. 

User Prompt 

Y 

Response by ChatGPT 

Red on the right and blue on the left represent positive 

correlation, which means that the corresponding features are 

‘ph’, ‘Solids’, ‘Chloramines’, ‘Hardness’, and 

‘Conductivity’ respectively, and their values are 0.08, 0.21, 

0.29, 0.05, and 0.01; while blue is on the right and red on the 

left represents negative correlation, and the corresponding 

features are ‘Sulfate’, ‘Trihalomethanes’, ‘Organic_carbon’, 

and ‘Turbidity’ respectively, and their values are -0.04, -0.19, 

-0.46, and -0.02.Most of the positive or negative correlations 

are less than 0.5 or greater than -0.5: The higher the 

correlation, the more obvious the distribution of red and 

blue. Most of the relationships are weak, making it difficult 

to distinguish between the red and blue areas. 



This study uses prompt templates to enable ChatGPT 

to generate richer and more domain-specific responses, 

helping developers better understand the data, such as the 

significance of the red and blue regions and their 

distribution in SHAP plot, thus improving the speed of 

model development understanding. 

We verify whether feature selection based on SHAP 

data can help to improve model performance by focusing 

on feature importance and positive and negative 

correlations. First, we input the top 5 most important 

features from Table 3. We then remove features with 

higher negative correlations compared to other 

negatively correlated features. If any of the top 5 features 

are removed, they are replaced with the next most 

important feature, and so on. Table 6 presents the results 

of this experiment. 

Table 6 Performance of selected features is higher than 

that of all features 

Model F1-score Precision Recall 

All Features 0.727 0.808 0.660 

Selected Features 0.733 0.762 0.706 

The results in Table 6 indicate that the performance of 

the model with feature selection is improved compared to 

the model without feature selection, confirming the 

feasibility and research potential of our approach. 

 

5. CONCLUSION 

 

This study proposes an innovative approach to address 

challenges in machine learning model research by using 

LLM with prompt templates to provide textual 

explanations of SHAP plot, and integrating this with 

Kubeflow to achieve efficient automation of model 

explanations, training, and deployment. The textual 

explanations provided by the LLM effectively enhance 

the interpretability of SHAP charts and improve model 

performance based on the explanations generated by 

SHAP and the LLM. 

Experimental results show that incorporating prompt 

templates significantly improves the consistency and 

predictability of the LLM-generated textual explanations. 

Using these explanations to select features can enhance 

model performance. This innovative method is integrated 

into the KFP to achieve end-to-end automated 

deployment and management of machine learning 

models. The Kubeflow visualization features display 

SHAP plot and LLM textual explanations on the 

Kubeflow UI, facilitating easy reading by relevant 

personnel and demonstrating the practical potential of the 

proposed method. 

Future research will continue to explore other XAI 

techniques, enabling developers to refer to various XAI 

technologies for model improvement. Additionally, these 

technologies will be applied to user interfaces, allowing 

users to better understand model decisions and XAI-

generated graphics through Kserve predictions, thus 

expanding the application of AI technologies to critical 

fields such as healthcare and finance. 
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