
Automate End-to-End Deployment and Improve SHAP Interpretation and

Model Performance with Large Language Model

1Chung-Chian Hsu and *2Pin-Han Chen

 1
Department of Information Management

National Yunlin University of Science and Technology, Yunlin, Taiwan
2
International Graduate School of Artificial Intelligence

National Yunlin University of Science and Technology, Yunlin, Taiwan
*E-mail: m11263004@yuntech.edu.tw

ABSTRACT

With the rapid development of artificial intelligence,

many research challenges have emerged, including the

black-box nature of models and the automation of

deployment and maintenance processes. The black-box

problem forces developers to spend considerable time

and resources understanding model decisions when

optimizing model performance. As a result, Explainable

AI (XAI) techniques are becoming increasingly

important, but current XAI explanation methods are still

underdeveloped, requiring significant time investment

from researchers to learn. Similarly, without automation,

model deployment and maintenance also require a large

amount of time and effort, making Machine Learning

Operations (MLOps) a growing trend. To address these

challenges, this research proposes an innovative

approach that combines XAI techniques with Large

Language Model (LLM), utilizing custom graphic

prompts for XAI techniques and text explanations

provided by LLM. This enables developers to quickly

and easily understand model decisions while addressing

automation issues related to model deployment and

maintenance with Kubeflow. Experimental results show

that feature selection using SHAP improves model

performance. Integrating these steps into Kubeflow

allows for the automation of model deployment, training,

and explanation processes, giving model developers

more time to focus on improving their models.

Keywords: XAI, MLOps, LLM, SHAP, Pipeline

1. INTRODUCTION

In recent years, machine learning (ML) has achieved

higher accuracy, but most high-precision models are

black boxes, meaning the models lack interpretability.

This phenomenon has garnered widespread attention and

discussion in both academia and industry, leading to the

rise of XAI.

A black box means that even if we can accurately

predict outcomes, we cannot explain the underlying

prediction logic and reasoning process, forcing

developers to spend more time improving the model.

Black box models are applied in many critical societal

areas such as healthcare, finance, industry, and military

fields, where inaccurate predictions can have irreversible

consequences. Therefore, the models used must be

transparent and trustworthy, making XAI technology a

key solution to address the interpretability problem of

models [1]. Through model explanations, developers can

understand model decisions, thereby building trust in

predictions and ensuring their reliability and validity.

Apart from the black box problem, machine learning

models also face significant challenges in automation and

maintenance, including setting up training environments,

deploying models, and the manpower required for model

maintenance. The development and application of

models are closely related to these challenges, and

Machine Learning Operations (MLOps) has emerged as

a solution to address these issues.

MLOps provides a unified framework for managing

the lifecycle of models, covering development,

deployment, and monitoring processes. It allows for

highly automated model maintenance while ensuring

environmental consistency. These advantages can be

applied to model development, controlling model

versions and achieving updates through automated

deployment functions.

This research proposes an innovative approach by

combining Kubeflow Pipeline (KFP) [2] workflow, XAI,

and LLM. By utilizing LLM with prompt templates,

XAI-generated graphical information is transformed into

concise and understandable text explanations. This

provides model developers with more comprehensive

explanations, enabling them to improve model

performance based on these explanations, and enhances

the understanding and trustworthiness of model

decisions. Additionally, MLOps offers high automation

for model explanation, training, and deployment,

addressing issues related to model deployment and

training.

2. BACKGROUND KNOWLEDGE

2.1. Explainable AI (XAI)

In recent years, the rapid development of artificial

intelligence has led to more precise and complex model

predictions, increasing human reliance on these models.

However, this raises a problem: these models often lack

the ability to explain their reasoning and actions to human

users. Gunning etc. [4] proposed a novel framework that

addresses the challenge of model interpretability by

combining ML development principles with human-

computer interaction. In [5], the concept of XAI was

introduced to explain the behavior of AI systems in

simulation game scenarios. It was mentioned that to

achieve the highest accuracy with modern large datasets,

the models used are often so complex that even experts

find them difficult to interpret. Therefore, a unified

method for explaining model predictions, SHapley

Additive exPlanations (SHAP), was proposed [6].

Moreover, Ribeiro etc. [7] proposed LIME, a local post-

hoc explanation method that transforms unreliable

models into trustworthy ones.

 However, the explanation method described above is

too static, lacking interaction between the explainer and

the recipient. The best explanation method should be

human-centered. As mentioned in [8], explanations

should involve interaction between the explainer and the

recipient. The essence of explanations should be social,

and communication with users should be conducted

interactively. XAI technology should focus on users,

providing explanations that help clarify and simplify

model principles for better understanding. [3] suggests

that LLM should be used to increase interaction between

XAI and human users, and hopes that researchers will

develop interactive explainable systems using LLM.

2.2. Kubeflow

Kubeflow is a model development platform built on

Kubernetes [10]. Building machine learning systems

typically involves system setup, requiring the installation

of various packages, which makes the system

increasingly complex and difficult to migrate when

development environments change. Kubeflow addresses

all environmental issues by providing the tools needed

for model development. It integrates various open-source

projects from different areas of machine learning, such as

Optuna, Argo, and Kserve, to manage different stages of

machine learning, including hyperparameter tuning,

workflows, prediction, and service management.

Kubernetes, like Kubeflow, is an open-source system

developed by Google. Kubernetes is an open-source

container management system, where the outermost

1 https://www.kaggle.com/datasets/adityakadiwal/water-potability

container in Kubernetes is called a Pod. A Pod is a

collection of one or more containers, with the main

program running through the Pod's child containers while

other containers provide supporting functions. Through

Pods, different teams can develop various functionalities,

and Pods can enhance robustness, composability, and

fine-grained resource adjustment capabilities [10].

3. METHOD

We used KFP to divide the machine learning process into

three parts. The first part involves model development

and training. The second part provides XAI techniques

for the model trained by KFP The third part is the

deployment of the trained model for use. Figure 1

illustrates the workflow of this research.

Fig. 1. The proposed framework: XAI and LLM are

integrated in the KFP .

Kubeflow provides powerful workflow orchestration

capabilities for model deployment and training, but it

lacks XAI techniques. This limitation means that

developers cannot improve black-box models effectively.

Therefore, we propose an innovative idea: integrating

XAI techniques into KFP for machine learning models,

and using LLM to provide more in-depth explanations for

developers. This approach allows developers to better

understand feature importance and key factors within the

model. Using this information enables developers to

improve model performance.

Pipelines are primarily composed of components,

each performing different functions. Data transfer

between components is facilitated through Kubeflow

APIs. Pipelines offer high portability because each

component is an independent function. Furthermore,

debugging generally becomes easier.

3.1. Model Development

3.1.1. Data Preprocess

In the preprocessing phase, we addressed missing values

by imputing them, using categorical clustering, and

applied this to a water resources dataset 1 related to

environmental issues. This dataset had missing values, so

we imputed missing values for the clustered features—

PH, Sulfate, and Trihalomethanes—using the mean of

the features. We then split the dataset into 70% training

and 30% testing sets. Finally, we standardized the feature

values using StandardScaler to ensure model stability.

3.1.1. Katib

Before training, we perform hyperparameter tuning to

optimize model performance. Katib is a hyperparameter

tuning tool within Kubeflow that orchestrates

hyperparameter tuning workflows through Pipelines.

Katib provides various algorithms for hyperparameter

optimization and allows custom-developed algorithms to

be packaged into Docker containers for use within Katib.

In this study, we package the model into a Docker

container and use Katib for hyperparameter tuning. The

hyperparameter tuning was divided into five steps:

1. Algorithm Selection: Katib offers multiple

algorithms for hyperparameter optimization. After

comparison, we chose Tree of Parzen Estimators

(TPE) as the primary optimization algorithm.

2. Defining Hyperparameter Ranges: We limit the

range of hyperparameters to reduce the burden on

the search algorithm, maximizing the effectiveness

of hyperparameter tuning and further improving

model performance.

3. Choosing Evaluation Metrics: We select evaluation

metrics to assess model performance under different

hyperparameters. Katib allows setting performance

thresholds. This study uses F1-score as the primary

evaluation metric, while also displaying Recall and

Precision as additional metrics for reference.

4. Output: The optimized hyperparameters are

outputted for model training.

5. Cleaning Up Experimental Environment: In Katib,

using the same name can lead to errors. To avoid

continuous occupation of system resources, we

delete completed experimental environments.

3.2. Explain model

We used XAI techniques to interpret the model and

combined them with LLM for further explanation.

Developers can use SHAP feature importance and key

points extracted by LLM to improve the model. Many

XAI techniques are discussed in the literature, with

SHAP being one of the most commonly used techniques.

3.2.1. SHAP

SHAP is an XAI technique based on game theory [6]. It

helps in understanding model predictions by providing

insights into how features contribute to the output. SHAP

exhibits unique advantages among XAI techniques,

offering both global explanations of the model's behavior

and local explanations for individual predictions. The

formula for local explanations in SHAP is represented as

follows:

𝜙𝑖(𝑥) = ∑
∣S∣!(∣N∣−∣S∣−1)!

∣N∣!S⊆N∖{i} [𝑓(𝑥𝑆∪{𝑖}) − 𝑓(𝑥𝑆)] (1)

where 𝑥 represents a data point, 𝑖 denotes a feature,

and 𝜙𝑖(𝑥) indicates the contribution of the ith feature for

the data point. 𝑁 represents the set of all features, and 𝑆

is the subset obtained by excluding feature 𝑖
∑ S⊆N∖{i} represents require computing and summing all

possible subsets 𝑆 , where |𝑆| and |𝑁| denote the

number of features in the sets 𝑆 and 𝑁 . This formula

calculates an attribution score 𝜙𝑖(𝑥) for each feature,

quantifying its contribution to the model's prediction

probability 𝑓(𝑥). The model prediction probability 𝑓(𝑥)

is determined by summing the baseline prediction 𝜙0 and

the contributions from all features 𝜙𝑖(𝑥). The baseline

prediction 𝜙0 is calculated as the average prediction

across all feature distributions. The formula is expressed

as follows:

𝑓(𝑥) ≈ ∑ 𝜙𝑖(𝑥) +𝑁
𝑖 𝜙0 (2)

𝝓𝟎 = 𝔼𝒙[𝒇(𝒙)] (3)

Global explanations help developers understand the

importance and positive or negative correlations of

features within the model. The overall importance of a

single feature in global explanations is represented by the

sum of its contributions across all data points. This can

be expressed with the following formula:

Φi = ∑ |𝜙𝑖(𝑥)| 𝑋
𝑥 (4)

The higher the value of Φ𝑖 , the greater the importance

of the feature. SHAP values and plots only show how

feature values impact the model. This study further

proposed to use Pearson correlation coefficient to

quantify the positive or negative correlation between

feature values and their impact (i.e., SHAP values) on

model output. The Pearson correlation coefficient is

calculated using the following formula:

γ =
∑(Xi−X̂)(Yi−Ŷ)

√∑(Xi−X̂)2 ∑(Yi−Ŷ)2
 (5)

where 𝑋𝑖 represents the SHAP value, 𝑌𝑖 represents the

feature value, 𝑋̂ is the average SHAP value, and 𝑌̂ is the

average feature value.

3.2.2. LLM Explain SHAP Feature Important

This study uses LLM to provide extended explanations

for visualizations generated by SHAP (e.g., Figure 2) and

displays both the graphics and text explanations on the

Kubeflow UI using its visualization technology.

However, LLM are not specifically trained for XAI

purposes and thus lack inherent XAI knowledge. To

address this, we propose to employ customized prompt

templates to enhance the LLM understanding of SHAP

data (importance, positive/negative correlations) and

guide the LLM in generating specific and relevant

responses. Experimental results show that prompt

templates can effectively improve the LLM

understanding of SHAP data and increase the stability of

the generated text. Texts generated by the LLM provide

developers with insights into feature importance and the

positive/negative correlations of features, which can be

used to improve model performance.

Fig. 2. SHAP-generated plot

In the proposed KFP, global information and

statistical analysis from SHAP will be sent to another

component for extended explanation by the LLM.

Considering that the LLM used in this study is primarily

for text analysis and does not support tabular data, those

data will be converted to JSON format before being read

by the LLM. Converting to JSON helps the LLM to

understand the data more easily while preserving its

structured information.

3.3. Serving Model

During the deployment phase, this study uses Kserve to

deploy machine learning models for user predictions.

Kserve is based on Kubernetes and utilizes Knative and

Istio for model deployment and service management. It

is highly compatible with Kubeflow, allowing Pipelines

to use its services for model deployment.

In Kubeflow, we use PVC (Persistent Volume Claims)

to store model data and create a YAML file to describe

the configuration and parameters of the model service,

including the location of the model data for deployment

through Kserve. Once the deployment is complete, the

deployed model can be viewed on the Kubeflow UI, and

predictions can be made by invoking the model through

this endpoint.

4. EXPERIMENT

In the field of environmental monitoring, this study used

a water quality dataset to validate the proposed research

framework. The dataset includes 10 features and 3,276

records, with the data split into 70% for training and 30%

for testing. After comparing five prediction models,

XGBoost demonstrated the highest overall performance,

as shown in Table 1. Therefore, XGBoost was ultimately

chosen as the prediction model. An XAI technique,

specifically TreeSHAP, was used to explain the model.

Following this, LLM was employed for further

explanation of the SHAP plot, enabling model developers

to more quickly understand the importance of features

and their positive/negative correlations.

Table 1 Performance of all models shows that XGBoost

outperformed the other models

Model F1-score Precision Recall

XGBoost 0.727 0.808 0.660
CatBoost 0.722 0.821 0.645

Decision Tree 0.664 0.724 0.612

KNN 0.457 0.514 0.411

SVM 0.346 0.739 0.225

In the entire workflow, we used KFP as the workflow

management tool to construct a pipeline, enhancing

automation and efficiency. We also utilized the

visualization capabilities of the Pipeline to display the

results of LLM and SHAP, allowing model developers to

easily interpret the outcomes. Additionally, the pipeline

automates model deployment, as illustrated in Figure 3.

Fig. 3. a. The KFP automates data preprocessing, training,

deployment, and integrates explanation functionalities. b.

(1) The Kubeflow interface successfully displays SHAP

plots and the explanations of SHAP plots generated by

the LLM. (2) It can be observed that the red and blue data

points in the SHAP plot are highly mixed, indicating that

the dataset is difficult to predict. It generates explanations

from the LLM regarding feature importance. (3) It

explains the positive and negative correlations between

feature values and model output values in the SHAP plots,

making it easier for viewers to understand the SHAP

result plots.

In this study, the ChatGPT API was used to build a

prototype system for the LLM. As mentioned in Section

2.2.2, we have set up prompt templates to assist ChatGPT

in understanding SHAP data and guiding it to generate

relevant responses. The important prompt template

designed for this research includes two steps to explain

feature importance in the model. The first part explains

how feature importance impacts model predictions. The

second part provides examples for the LLM on how to

present feature names and importance scores, along with

a template for explanations. Table 2 presents the

customized prompt templates for the LLM in this study.

Table 2 Feature importance prompt templates.

Step1

Feature importance can evaluate the contribution of each

feature to model prediction. The higher the value, the greater

the impact on the model output result.

Step2

example:
{"Feature": "A", "Importance": 90},

{"Feature": "B", "Importance": 82}, {"Feature": "C",

"Importance": 66}, {"Feature": "D", "Importance": 62},

{"Feature": "E", "Importance": 20}, {"Feature": "F",

"Importance": 19}

Its important features are "A", "B", "C", and "D". These four

features contribute the most to the target variable, and their

important star scores are 90, 82, 66, and 62

respectively.
In addition, features such as "E", "F" have

slightly lower contributions to the target variable, and their

importance scores are 20, and 19 respectively.

By using prompt templates to explain feature

importance, the results are shown in Table 3. The input

SHAP data is represented as 𝑋, which includes two main

pieces of information: feature names and importance

scores.

Table 3 Explanation generated by ChatGPT.

User Prompt

X

Response by ChatGPT

Feature importance can evaluate the contribution of each

feature to model prediction. The higher the value, the greater

the impact on the model output result.

Its important features are ‘Sulfate’, ‘ph’, ‘Solids’, and

‘Trihalomethanes’. These four features contribute the most

to the target variable, and their importance scores are 2441,

1631, 580, and 497 respectively. In addition, features such as

‘Chloramines’, ‘Hardness’, ‘Organic_carbon’, ‘Turbidity’,

and ‘Conductivity’ have slightly lower contributions to the

target variable, and their importance scores are 489, 482,

433, 405, and 383. respectively.

From the text generated by ChatGPT, developers can

learn the feature names and their corresponding

importance scores for the dataset. The text also highlights

the four most important features for reference. To explain

feature correlations, we use a similarly structured prompt

template. The first part introduces the relationship

between correlations and SHAP plot, while the second

part provides examples and a threshold for determining

whether the red and blue regions in the SHAP plot are

distinctly differentiated. Table 4 shows the prompt

templates.

Table 4 SHAP value & feature value Pearson

correlation prompt templates

Step1

Explain binary classification in the SHAP global diagram.

Positive correlation means that the larger the value, the

closer it is to category 1, and the smaller the value, the closer

it is to category 0; negative correlation means The smaller

the value, the closer it is to category 1, and the larger the

value, the closer it is to category 0. Taking the X-axis SHAP

value of 0 as the midline: a positive correlation means red is

on the right and blue is on the left; a negative correlation

means blue is on the right and red is on the left. The higher

the correlation, the more obvious the distribution of red and

blue.

Step2

example:

{"feature": "A", "feature value& shap value Pearson

Correlation": 0.75}, {"feature": "B", "Pearson Correlation":

0.26}, {"feature": "C", "Pearson Correlation": -0.51},

{"feature": "D", "Pearson Correlation": -0.81}, {"feature":

"E", "Pearson Correlation": 0.70}, {"feature": "F", "Pearson

Correlation": -0.53}

Red on the right and blue on the left represent positive

correlation, which means that the corresponding features are

"A", " B ", "E", respectively, and their values are 0.75, 0.26

and 0.70; while blue is on the right and Red on the left

represents negative correlation, and the corresponding

features are "C", "D", "F", respectively, and their values are

-0.51, -0.81, -0.53.

If most positive or negative correlations are greater than 0.5

or less than -0.5: The higher the correlation, the more

obvious the distribution of red and blue. For example, the

resolution of "A", "E", "C", "D", "F is relatively high. If most

positive or negative correlations are less than 0.5 or greater

than -0.5: The higher the correlation, the more obvious the

distribution of red and blue. Most of the relationships are

weak, making it difficult to distinguish between the red and

blue areas.

Table 5 presents the explanations of positive and

negative correlations generated by the LLM. The input

data is represented as Y, which includes feature names

and the Pearson correlation coefficients between feature

values and SHAP values.

Table 5 Explanation generated by ChatGPT.

User Prompt

Y

Response by ChatGPT

Red on the right and blue on the left represent positive

correlation, which means that the corresponding features are

‘ph’, ‘Solids’, ‘Chloramines’, ‘Hardness’, and

‘Conductivity’ respectively, and their values are 0.08, 0.21,

0.29, 0.05, and 0.01; while blue is on the right and red on the

left represents negative correlation, and the corresponding

features are ‘Sulfate’, ‘Trihalomethanes’, ‘Organic_carbon’,

and ‘Turbidity’ respectively, and their values are -0.04, -0.19,

-0.46, and -0.02.Most of the positive or negative correlations

are less than 0.5 or greater than -0.5: The higher the

correlation, the more obvious the distribution of red and

blue. Most of the relationships are weak, making it difficult

to distinguish between the red and blue areas.

This study uses prompt templates to enable ChatGPT

to generate richer and more domain-specific responses,

helping developers better understand the data, such as the

significance of the red and blue regions and their

distribution in SHAP plot, thus improving the speed of

model development understanding.

We verify whether feature selection based on SHAP

data can help to improve model performance by focusing

on feature importance and positive and negative

correlations. First, we input the top 5 most important

features from Table 3. We then remove features with

higher negative correlations compared to other

negatively correlated features. If any of the top 5 features

are removed, they are replaced with the next most

important feature, and so on. Table 6 presents the results

of this experiment.

Table 6 Performance of selected features is higher than

that of all features

Model F1-score Precision Recall

All Features 0.727 0.808 0.660

Selected Features 0.733 0.762 0.706

The results in Table 6 indicate that the performance of

the model with feature selection is improved compared to

the model without feature selection, confirming the

feasibility and research potential of our approach.

5. CONCLUSION

This study proposes an innovative approach to address

challenges in machine learning model research by using

LLM with prompt templates to provide textual

explanations of SHAP plot, and integrating this with

Kubeflow to achieve efficient automation of model

explanations, training, and deployment. The textual

explanations provided by the LLM effectively enhance

the interpretability of SHAP charts and improve model

performance based on the explanations generated by

SHAP and the LLM.

Experimental results show that incorporating prompt

templates significantly improves the consistency and

predictability of the LLM-generated textual explanations.

Using these explanations to select features can enhance

model performance. This innovative method is integrated

into the KFP to achieve end-to-end automated

deployment and management of machine learning

models. The Kubeflow visualization features display

SHAP plot and LLM textual explanations on the

Kubeflow UI, facilitating easy reading by relevant

personnel and demonstrating the practical potential of the

proposed method.

Future research will continue to explore other XAI

techniques, enabling developers to refer to various XAI

technologies for model improvement. Additionally, these

technologies will be applied to user interfaces, allowing

users to better understand model decisions and XAI-

generated graphics through Kserve predictions, thus

expanding the application of AI technologies to critical

fields such as healthcare and finance.

ACKNOWLEDGEMENT

This research is supported by the National Science and

Technology Council, Taiwan under the project Design of

a Command and Control Center for Sustainable Smart

Cities (NSTC 112-2634-F-194-001).

REFERENCES
[1] Antwarg, L., Miller, R. M., Shapira, B., & Rokach, L.,

“Explaining anomalies detected by autoencoders using

Shapley Additive Explanations”, Expert Systems with

Applications, vol. 186, pp. 115736, 2021.

[2] E. Bisong, Kubeflow and kubeflow pipelines, Anonymous

Berkeley, CA:Apress, pp. 671-685, 2019.

[3] H. Lakkaraju, D. Slack, Y. Chen, C. Tan, and S. Singh,

“Rethinking explainability as a dialogue: A practitioner’s

perspective”, arXiv preprint arXiv:2202.01875, 2022.

[4] Gunning, D., & Aha, D., “DARPA’s explainable artificial

intelligence (XAI) program”, AI Magazine, vol. 40, no. 2,

pp. 44-58, 2019.

[5] Van Lent, M., Fisher, W., & Mancuso, M., “An explainable

artificial intelligence system for small-unit tactical

behavior”, Proceedings of the National Conference on

Artificial Intelligence, 2004.

[6] S. Lundberg, “A unified approach to interpreting model

predictions,” arXiv preprint arXiv:1705.07874, 2017

[7] M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should i

trust you?” explaining the predictions of any classifier,” in

Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining, 2016,

pp. 1135–1144.

[8] Miller, T., “Explanation in artificial intelligence: Insights

from the social sciences”, Artificial Intelligence, vol. 267,

pp. 1-38, 2019.

[9] Wong, W. K., & Lee, C. S. (2020, 7-15 Feb. 2020). An

Implementation of Face Recognition with Deep Learning

based on a Container-Orchestration Platform. 2020 Indo –

Taiwan 2nd International Conference on Computing,

Analytics and Networks (Indo-Taiwan ICAN).

[10] B. Burns, B. Grant, D. Oppenheimer, E. Brewer and J.

Wilkes, "Borg Omega and Kubernetes", Commun. ACM,

vol. 59, no. 5, pp. 50-57, Apr. 2016.

